M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2011

ST 1815/1810-ADVANCED DISTRIBUTION THEORY

Date: 03-11-2011
Dept. No. \square Max. : 100 Marks
Time : 1:00-4:00

SECTION - A

Answer ALL questions. Each carries TWO marks.

1. Define distribution function of a random variable and state its properties.
2. Find the mean and variance of discrete uniform distribution.
3. Let X be exponential with parameter θ. Obtain the p.d.f. of truncated exponential with support $(2, \infty)$.
4. Let X_{1} and X_{2} have iid Poisson distribution $P(\lambda)$. Find the conditional distribution of $X_{1} \mid X_{1}+X_{2}=n$ at x.
5. Show that the marginals of a bivariate discrete uniform need not be discrete uniform.
6. Let $\left(X_{1}, X_{2}\right) \sim \operatorname{BVP}\left(\lambda_{1}, \lambda_{2}, \lambda_{12}\right)$. Find $V\left(X_{1} \mid X_{2}=x_{2}\right)$.
7. Let $X \sim \Lambda\left(\mu, \sigma^{2}\right)$. Show that $\frac{1}{X} \sim \Lambda\left(-\mu, \sigma^{2}\right)$.
8. Show that exponential distribution satisfies lack of memory property.
9. Let $\left(X_{1}, X_{2}\right) \sim \operatorname{BVE}\left(\lambda_{1}, \lambda_{2}, \lambda_{12}\right)$. Find the distribution of $X_{1} \wedge X_{2}$.
10. Define compound distribution and write the formula to obtain its p.d.f. when (i) θ is discrete (ii) θ is continuous.

SECTION - B
Answer any FIVE questions. Each carries EIGHT marks.
11. Let the distribution function of X be

$$
\mathrm{F}(\mathrm{x})=\left\{\begin{array}{c}
0, x<-1 \\
\frac{(x+2)}{4},-1 \leq x<1 \\
1 \quad, 1 \leq x<\infty
\end{array}\right.
$$

Find (i) the decomposition of F , (ii) MGF of X.
12. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables such that X_{n} is discrete uniform on $\left\{\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}\right\}, \mathrm{n}=1,2,3, \ldots$. .Show that $\mathrm{X}_{\mathrm{n}} \xrightarrow{d} \mathrm{X}$ where X is $\mathrm{U}(0,1)$.
13. State and prove a characterization of Bernoulli Distribution through moments.
14. Verify that Binomial , Poisson and Log-series distributions are Power -series distributions.
15. Let $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \sim \mathrm{BB}\left(\mathrm{n}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{12}\right)$. Write the two regression equations and hence obtain the correlation coefficient between X_{1} and X_{2}.
16. Let $\left(X_{1}, X_{2}\right) \sim B B\left(n, p_{1}, p_{2}, p_{12}\right)$. Stating the conditions, show that $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ tends to $\operatorname{BVP}\left(\lambda_{1}, \lambda_{2}, \lambda_{12}\right)$.
17. Let $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \sim \operatorname{BVN}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$. Find the marginal distributions of X_{1} and X_{2}.
18. Define non-central ' t ' distribution and derive its p.d.f.

SECTION - C

Answer any TWO questions. Each carries TWENTY marks.
19(a) State and prove a characterization of geometric distribution through order statistics.
(16)
(b) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ be independent normal variates such that
$\mathrm{E}\left(\mathrm{X}_{1}\right)=1, \mathrm{E}\left(\mathrm{X}_{2}\right)=3, \mathrm{E}\left(\mathrm{X}_{3}\right)=2$ and $\mathrm{V}\left(\mathrm{X}_{1}\right)=2, \mathrm{~V}\left(\mathrm{X}_{2}\right)=2, \mathrm{~V}\left(\mathrm{X}_{3}\right)=3$.
Examine the independence of $X_{1}+X_{2}$ and $X_{1}-X_{2}$.
20(a) State and prove a characterization of Normal distribution. (12)
(b) Define log-normal distribution and find its p.d.f., mean, and variance.

21(a) Let $X_{1} \sim G\left(\alpha, p_{1}\right), X_{2} \sim G\left(\alpha, p_{2}\right)$ and X_{1} is independent of X_{2}.
Prove that
(i) $X_{1}+X_{2} \sim G\left(\alpha, p_{1}+p_{2}\right)$,
(ii) $\mathrm{X}_{1} /\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right) \sim$ Beta distribution of first kind,
(iii) $X_{1}+X_{2}$ is independent of $X_{1} /\left(X_{1}+X_{2}\right)$.
(b) State and prove additive property of Bivariate Binomial distribution.

22(a) Define non-central Chi-square distribution and derive its MGF.
(b) Define Quadratic form in normal variables.

